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TECHNICAL NOTE Mo. 1081

FLOW OVELR A SLENDER BODY OF RRVOLUTICN
AT SUFELSONIC VELOCITIES

By Robert T. Jones and Kenneth Margolis

SUMBARY
The theory of small disturbances js applied to the caleulation

of the pressure distribution and drag of a closed body of réveolution -

traveling at supersonic speeds. It is shiown that toward the rear
of the body the shape of the precssure distribution is similar to
that for subsonic flow. For fineness ratios between 10 ahd 15 the
theoretical wave drag is of the same order as probable valucs of
the frictional drag. .

INTRODUGTICN

Methods for calculation of the fIow over a body of revolution
traveling at supersonic velocities have been known for some time.
(See references 1 and 2.) Investigations along these lines have,
however, been confined chiefly to bodies having the form of
artillery projectiles., Such bodies, because of their blunt forms,
show relatively high drags and are thus not suited for use on
high-speed aircraft. The drag of slender bodies and the effects
of fairing the rear of these bodies are therefore of considerable
interest in comnection with the problem of £light at spseds above
the speed of sound.

In view of the interest in possible seronautical appllcatmns
it vas thought worth while to apply the known methods to a
parbicular case of a closcd body having both & tapered nose ahd &
tapered tail. Slender shapes described by .the yotation of i
parabolic arcs weres chosen and the resulbting pressure distributions
over the surfaces as well as along the axes behind the bodies were
calculated. The results are compared with those dbtained for
similar shapes in an incompressible fluid.and-also in one case
with a two-dimensional body having a similar cross section.
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SYMBOLS o . .- : ,

X, ¥, 2 Cartesian coordinates

v undisturbed fluid velocity
a speed of sound in fluid
M Mach number (V/a) l _ o —

B o= M2 o1
T o= y2 + 22

P.* _  density of fluid

q. | dynanic pressure' 22‘-612>

Ap px-'essure increment - '
%, velocity potential of single source '~

_,

velocity potential of continuous distribution
of sources along x=-axis

<A .abscissa of individual sources .- B
R radius of body B
d -maximm diameter of body
. L
L length of body
Smax maximum cross-sectional aren _
D .- drag
Cp - drag coefficient bascd on maximum .cross-sectional
a area (D/aSpay)
Cp. * drag coefficjent based on: 2/3 power of
vol - o ) . . ’
rolume .
2/3
q{Volunme) /
¢, C ‘dohgtants ’
2 -
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METHODS OF CATLCULATION

The method used herein follows closely that of reference 1.
Figure 1 shows the shape of the body and the orientation of the
axes, The disturbance produced by the body is assumed to be small
and the flow isentropic so that the linearized equation for the
potential of the disturbance velocities - § will apply. This
equation is (s'ee reference 2) . T

As in the case of an incompressible fluid the flow over
the body can be obtained by the addition of flows due to an
infinite number of sources distributed along the axis. The
potential of a single source in a supersonic stream is

g, = - cv
o] o
\/X2~ B2(y? + 5°)

R ¢\ A o

W _ . (2)

where )
B=\ % =1

and
fr————

ra= Q y2-+ 22

Figure 2 shows the equipotential lines for the supersonic
source compared with those for a source in an incompressible
flow. In the case of a soufce in an incompressible flow the
equipotential surfaces are spheres, given by the expression

go = GV (3)
N

In the supersonic case the equipotentizl surfacés are hyperboloids
of two sheets contained within the fach cones. Although the
mathematical expression has values in two cones, one ahead of and
one behind the source, only the values behind have physical
significance.
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It will be noted that the distribution of velocities along
the x~axis is the same for the supersonic source (equation (2))
as for the subsonic or incompressible source (equation (3)).
Since .the forward cone is to be disregarded in the supersonic case,
however, it is found that the coefficient C in equation (2)
must be doubled in order to produce the same flux, or intensity,
as equation (3)+  The result is that the velocities along the
axis behind, a; supersonic. source are exactly twice those of a
subsonic source having the same intensity.- .

The sources and sinks are assumed to be continuously
distributed with intensity 2xnVE£(E) .per unit length along the
x=axis from -1 to 1. The abscissas of the individual sourccs are
denoted by &. Positive values of f£(£) denote sources and
negative values denote sinks. By adding the potentials due to
the single elcmentary sources f(g)dg the resulant flow

. e

f : X=Br | ' R
g v/ £(9d8 W
-1 Vix - &)2 - B2 (b

W

is obtained, o

The problem is to determine a source dlstrlbutlon in such a
way that -

Y o)
vior

where dR/dx gives the shape of the meridian curve of the body
of revolution., It is shown in refercnce 1 that to a first
approximation for a slender body the source strength is pro-
portlonal to the’ ratu of change. of. the cross section of the body,
that is

- .,

. (5)

& I8

Cle was

£(x) = R jz | (6)

A similar approximation can be appliecd to obtain the source
distribution for a body in subsonic flow. The distributions are,
in fact,-the same in the two cases with the’ exception that in the
supersonic flow the valug of f£(x) must be doubled to account

for the qllmlnatlon_of the flux through the forward cones.
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By choosing #£(x) = o{x3 - x) and solving equation (6), the
following expression for R was obtained: e wls
. ’ d €A~

) ) R="I-_g(i'— 2) - I\f'V--'\g,u*/ (1)

This expression may be recognized as the equation of a surface .
obtained by revolving a parabolic arc about 1ts chord. The
fineness ratio of the body is determined by the value assigned
the factor c. ‘

On substituting c(§3 -2) for f£(&) in equation (k4), the
velocity increment Of/dx ot point (x,r) 1s found to bo (see
equation (9.5), p.39, reference 1)

x-Br

% -V £ (&) a&
-1 \/(x - §,)2 - 32r2 )

-Br

(322 - 1)
v

. 2k .
U -1 \/(x = §)2 - BQrE

o |35\ 2 2R
+ 3:«:2 - 1 +g~ Ber2 cosh-}<ic§r—l>} . : (8)
over the body. c : :

Along 'the exis behind the body the integration gives

eV (3x2 - 1) ldg%“f“%_’ - 6% ‘ . .(9)

The prossure coofficients wore onleulated by thoFormila

A 2 af
—&?"T d'gr‘ (10)
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RESULTS

Galculations have been made for a Mach number of 1,4 and for
' three thickness ratios d/L of 0.0687, 0,10, and 0,15 corvesponding
to fineness patios .L/d of 15, 10, and 6,67, respectively. _The
results for the three bodies are shown in figures 3, L, and 5,
respectively, and are compared with the theoretical pressure— -
distributions over these bodies in an incompressible fluid. A
discussion of the errors involved in the linear theory and the
variation of the pressures with Mach number will-be found in
referénce 3¢ .

Comparison of the distributivns in a compressible fluid and
in an incompressible fluid shows a certain similarity, especially
toward the rear ef the body. The effect of supersonic speed
appears to be similar to the effect of a lag inasmuch as the
negative pressure peak and the region of p"essure recovery are
displaced rearward. The. pressures glong the axis behind the body

are just twice those pragduced by an incompressible fluad, as may .
be seen by referping o the welocity fielg of a single source.

The results obtained herein for the three~dimensional body
are in marked contrast to the results obtained for two~dimenslonal
bodies, or wing sections, having similar cross sdetionse~ 4s is
well known, in the two-dimensional casec no pressure rccovery
takes place at supersonic speeds, the pressure at a point being
determined solely hy The inclination of the Surface.ab: that poind
so that positive OSSUres oceur wherevEr the ‘ jon is.

anding and presgures occur wherever the cross
sectlon is diminishing. Tigurc 6 shows tnc comparison of the
Two—dimeis LonaL and‘fhree-dlmen81onal bOleS for tha 0,10
thiclkness ratio.”

The essential difference betwcen the two- and threce-
dimensional flows corresponds to the diffurence noted by Lamb
(rcference L) between the characteristics of a plane sound wave
and an axially symmétrical wave ‘diverging from a canter, AS
noted by Lamb, the plane wave, which corresponds in the present
case to the flow produced by the two-dimensional wing scction,
is propagated indefinitely vithout change of form; whorcas the
axially symmetrical wave, which approximates that produced by an
element of the slender body of rcvolution, does not follow the
form of the disturbing motion but leaves a "tgll" of dlmlnishlng
intensity and indefinite pxtunt. Tnus tho vi £aves

3S8UTra dlsturbance '

6
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acting on the body, however, shows that the positive pressure at
the rear of the three-dimensional bLody is sufficient to cancel
only a small fraction of the total pressure or wave drag.

The wave-drag coefficients based on the maximum frontal area
were found to be 0.049, O. 11, and 0.24 for.the bodies with thickness
ratios of 0.0667, 0.10, and 0.15, respegtively. Figure 7 shows
a cowmparison of bhese values with the wave drags of corresponding
two-dimensional wing sections. It will be noted that the wave
drag of the fuselage form is .aq:prox:.ma.tel*r proportlonal to the

square of the thickness ratin, . . '

An approximate estimate of the total drag of a body may be
obtained by adding values of the frictional drag to the wave drag.
A rather complete treatment of the frictiounal drag of bodies of
revolution at subsonic speeds is available from reference 5. By
use of values from reference 5 sorresponding to a fully turbulont
boundary layer and & Reynolds numbsr of 103, the following estimates
of the total drags of the bodies were obbtained:

Thickness ratio . - C. c
Da Dvol
0.0867 ' 0.1k 0.032
<10 L A7 .- . 081
115 - A Q29 Qll

*here GD is the drag COUffLCl&nt baued on the frontal area 4nd
2

Cp 1 is tﬁe drag coefflcient bised on *he'volume of th° body to-
Vo :

the 2/3 power.

The drag of a given volume is.sn.important criterion in the
case of an airplane fuselage and it will be of interest to compare
these valies with a typical value attainrable at subsonic speeds.
For a2 Reynolds number of 108 and a turbulent boundary layer, the
best value given by Young (reference 5) corrcsponds to a thickness
ratio of 0.2 and is approximately SRR

C = 0,016
Dvol

CONCLUDING RZMARKS

The theoretical pressure distribution over a closed body of
reveolution traveling at supersonic velocities shows a pressure
recovery at the rear of the body similar fo that occurring =t

7
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subsonic speeds. The extent of the region of positive pressure
is, however, not sufficient to have a pronouncea effeclt on the
wave drag. It appears to be necessary to use extremely slender
shapes to obtain total drag wvalues comparable to those of a
conventional airplane fuselage at subsonic speeds. YFor fineness
ratios between 10 and 15 the theoretical wave drag is of the same
order az probable values of the frictional drag.

Langley Memorial Aeronauvtical Laboratory
National Advisory Committee for Aerconsutics
Langley Field, Va., July 8, 1946
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Figure 1.- Orientation of axes and shape of body.
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Figure 2.- Equlpotential lines for & supersonic source compared with those
for a source in an incompressible flow.
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Figure 3.~ Calculated pressure distributions for a thickness ratic
of 0.0667.
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Figure 4.~ Calculated pressure distributions for a thickness ratio
Of Olloo
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Figure 5.~ Calculated pressure distributions for a thickness ratio
of 0.15.
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Figure 6.- Comparison of pressures for two- and three-dimenslonal bodies at
a Mach number of 1.4 for a thickness ratlo of 0.10.
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" Figure 7.- Comparison of wave drags of two- and three- dlmensional
bodies for a Mach number of 1.4.



